Wednesday 22 November 2017

Autoregressive moving average matlab code


Para gerar modelo Autoregressivo, temos o comando aryule () e também podemos usar o modelo AR de filtrosEstimating. Mas como faço para gerar modelo MA Por exemplo, alguém pode mostrar como gerar o modelo MA (20). Não consegui encontrar nenhuma técnica apropriada para fazê-lo. O ruído é gerado a partir de um mapa não-linear. Assim, o modelo MA irá regredir em termos de epsilon. Q1: Será extremamente útil se o código e a forma funcional de um modelo MA forem mostrados de preferência MA (20) usando o modelo de ruído acima. Q2: É assim que eu gerei um AR (20) usando barulho aleatório, mas não sei como usar a equação acima como o ruído em vez de usar rand para ambos MA e AR perguntou 15 de agosto 14 às 17:30 Meu problema é o uso de filtro. Não estou familiarizado com o conceito de função de transferência, mas você mencionou que o numerador B39s são os coeficientes MA, portanto o B deve ser os 20 elementos e não os A39s. Em seguida, let39s dizem que o modelo tem uma intercepção de 0,5, você pode mostrar com o código como eu posso criar um modelo de MA com 0,5 intercepção (como mencionar a intercepção no filtro () e usando a entrada definida na minha pergunta, por favor Obrigado Você é o link do filtro, que realmente eliminou as dúvidas sobre como usar o filtro. Ndash SKM 19 de agosto 14 às 16:36 No filtro quoty (b, a, X) filtra os dados no vetor X com o filtro descrito pelo vetor do coeficiente de numerador B e o vetor do coeficiente de denominação a. Se a (1) não é igual a 1, o filtro normaliza os coeficientes de filtro por um (1). Se a (1) é igual a 0, o filtro retorna um erro. quot (mathworkshelpmatlabreffilter. html) isto é A área do problema como eu não compreendo como especificar o a, b (coeficientes de filtro) quando há uma interceptação de dizer 0,5 ou intercepto de 1.Pode você mostrar um exemplo de MA com filtro e uma interceptação diferente de zero usando a entrada Que eu mencionei na pergunta ndash SKM 19 de agosto 14 às 17: 45Processamento de SinalDigital Filters Digita Os filtros são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de resposta de Implulgação finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em volta desse ponto do meio para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, o que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos Editar modelo médio móvel (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que explica a banda de passagem do filtro. Filtros Integrator-Comb (CIC) em cascata Edit A O filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média de amostras R M. Sua função de transferência é assim dada por: os filtros CIC são usados ​​para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal a uma freqüência mais baixa, descartando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtro médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, não usando multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal pelos bits log 2 (R) (R). Filtros canônicos Edit Canonical filters implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de elementos de som. De forma semelhante às estruturas canónicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração em coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros de salto. Cadeia de secções de segunda ordem Editar uma seção de segunda ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware exigido, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto analógico ativo. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro de 4passões de allpass do allpass do pólo pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transferir Função A representação do espaço de estado do filtro precedente pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, as ferramentas de processamento de sinais, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo em uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive Filters (AR) Edit Autoregressive Filters (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados ​​usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados ​​por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até que o receba. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada: Simulação de média móvel de modo autoregressivo (Primeira ordem) A demonstração está configurada de modo a que a mesma série aleatória de pontos seja usada independentemente das constantes e variáveis. No entanto, quando o botão quotrandomizequot é pressionado, uma nova série aleatória será gerada e usada. Manter a série aleatória idêntica permite ao usuário ver exatamente os efeitos na série ARMA de mudanças nas duas constantes. A constante é limitada a (-1,1) porque a divergência da série ARMA resulta quando. A Demonstração é apenas para um processo de primeiro orden. Os termos AR adicionais permitiriam gerar séries mais complexas, enquanto outros termos MA aumentariam o alisamento. Para uma descrição detalhada dos processos ARMA, veja, por exemplo, G. Box, G. M. Jenkins e G. Reinsel, Time Series Analysis: Forecasting and Control. 3ª ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. LINKS RELACIONADOS

No comments:

Post a Comment